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Abstract. A novel variational approach is presented for the calculation of the ground-state
energy of the polaron in arbitrarfy dimensions in the strong-coupling limit. By using the
phonon coherent state to represent the wavefunction of phonons, a self-consistent integro-
differential equation for the electron wavefunction is derived. The calculated results of the
ground-state energy fav = 1, 2 and 3 agree well with the best results in the literature. It

is also found that, for arbitrary, the present results are less than the Feynman path integral
ones by small percentages. It is proposed that this approach should be universal for systems
involving polarons in the strong-coupling regime.

1. Introduction

The problem of arbitraryN-dimensional polarons has attracted much attention (an
incomplete list of studies is given in [1-6]) since the pioneering work by Peeteed

[1]. It is indeed interesting and holds promise. In recent years, polaron effects have been
observed in low-dimensional systems [7], some physical problems have been mapped in two-
dimensional polarons [8] and it has been technologically possible to confine the electrons
in one direction [9] (quantum wires) and in two directions [10] (such as GaA$&#l ,As
heterostructures).

On the other hand, the stability problem of a two-polaron bound state (bipolaron)
has become of interest since the mechanism of bipolaron Bose—Einstein condensation was
proposed by Emin [11] to explain high-temperature superconductivity (HTSC). In fact, the
HTSC materials are not restricted to three dimensions only and bipolarons are known to
exist in the strong-coupling regime [12,13]. Therefore, it is important to investigate the
single polaron in arbitraryv dimensions in the strong-coupling limit.

The main purpose of this paper is to present a new variational approach for calculations
of the ground-state energy @¥-dimensional polarons in the strong-coupling limit. We
select the wavefunction of the phonon part to be the coherent state form and derive a self-
consistent integro-differential equation satisfied by the electron wavefunction. Furthermore,
we obtain the ground-state energy by solving this equation numerically, rather than by
choosing any trial electron wavefunctions. We also compare our results with those available
in the literature.
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2. Integro-differential equations

We start with the Hamiltonian of polarons i dimensions derived by Peetegsal [1] (in
unitsof 2n =h = wg = 1)

H =p*+ Za,tak + Z Vi (akék'T + a,ié’”) Q)
k k

where all vectors ar@&/ dimensionaly andp are the position and the momentum operators
of the electrona,i anday, are respectively the creation and annihilation operators of the LO
phonons with the wavevectdr and
[ (N=1)\oN-1(N=1)/2,
( 2 ) — (2)
VNk?
with vy being theN-dimensional crystal volume andbeing the electron—phonon coupling

constant.
The solution to this Hamiltonian is assumed to take the following form:

i =

l...) =e()]A) (3)
whereg(r) is the electron wavefunction to be determined &afis the coherent state
|A) = exp(z [oc(k)a,t — a*(k:)ak]> |0). 4)

k

Herea (k) will be treated as a variational functiof)) is the unperturbed zero-phonon state
satisfyingag|0) = O for all k.

It should be mentioned that equations (3) and (4) have also been employed to
deal with N-dimensional polarons in the strong-coupling regime by Chatterjee [5]. For
further progress, he chose two trial wavefunctions, namely, the Gaussian function and the
hydrogenic 1s wavefunction, for the electronic part. However, in this paper it is unnecessary
to use any trial electron wavefunction, as will be shown below.

For the next step, averaging the Hamiltonian (1) over the wavefunction (3), we have
the following energy expectation:

E=(PY)+) a*(kak) + > vila(k)(explik - r)) + o (k) (exp(—ik - 1))] (5)
k k

where (...) denotes averaging over the wavefunctipir). Minimizing the energy
expectation with respect @(k) anda* (k) results in
a(k) = —vi(exp(—ik - 7)) (6)
a*(k) = —v(expik - r)). )
It is easily found thatt(k) = «*(k), both depending on the modulus of the vedkoonly.
In the averaging, the volume elementAidimensionahk--space can be reduced to

N-1

2mr 7
r(*z%)
whereé is the angle betweeh andr. So«a(k) can be expressed as

dr = N ldrsinV 20 do (8)

(271)%

a(k) = _UkF Jgflr%w(r)2 dr 9)

where J,, (x) is the mth-order Bessel function.
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Eliminating the phonon coordinates by averaging the Hamiltonian (1) over the phonon
coherent stat¢A), we derive the following effective Hamiltonian in the representation of
the electron coordinate:

Hypp=—V2+ Y a*(kak) + Y vila(k) explik - 7) + o (k) exp(—ik - 7)]. (10)
k k

Itis of some interest to note from equation (9) that the effective Hamiltonian (10) contains the
wavefunction of the electrop(r). Substituting equation (9) into equation (10), transforming
the summatior)_,, into an integraby /(27)" [ dk, integrating over all angles analytically,

followed by using the variable transformatigrir) = a%LIJ(otr), x = ar and E = Ega?,
the Schodinger equation for the reduced electron wavefunctign) is finally obtained as

follows:
1 d/ ,,d 8z
Nldx<x dxw(x))+{[r(N)]2
1 3-N N 2
/ dry Y2 (1) x / dp Y2 (x2) x5~ 1F<2 5 g (Z))
4 2 5 xﬁ’l 1 3— N [(x
_F(N)[/o i () = F<2 2 ’5 ())
1 3-N N 2
/ deg W2 (x)xy 2F< Py (;1) )“LIJ(x) (11)

whereF (a, b; c; z) is the hypergeometric function and use has been made of the following
definite integral of special functions:

© T (ut) I (V1) mym=1 /7 (1 1- 2m ( )2>
dr = 1; 12
fo 2 YT g <2’"T“>r<m+1>F 2 2 "R (12

which is valid for Ré2m) > —1 and O< u < v.

Note that this self-consistent integro-differential equation is independent Based on
the transformatiorE = Eqa?, it is found that the ground-state energy of tedimensional
polaron in the strong-coupling limit is proportional 4.

Eob(x) = —

3. Numerical results and discussion

It is possible to solve equation (11) numerically and to obtain the electron wavefunction
and the polaron ground-state energy for arbitrAndimensional polarons except the one-
dimensional polaron. A brief description of the numerical procedures is needed here. First,
choosing an initial wavefunction, say, the trial wavefunction in the literature, and inserting
it into the curly bracketd. ..} in the second term on the right-hand side of equation (11),
the numerical problem is then reduced to the standard two-point boundary value problem
with the boundary conditiogy’(0) = 0 and(co) = 0. For each iteration, we can get a new
solution for the wavefunction by the shooting method. Generally, it is not the true solution to
the Schédinger equation (11), because it is different from that in curly brackets. However,
it is predicted that after sufficient time iterations the obtained solution can be brought into
excellent agreement with the true ones. If the electron wavefunction is actually found, the
polaron ground-state energy can be obtained simultaneously. In the following calculations,
on the basis of extensive tests, we believe that the polaron ground-state energies are accurate
for the given digits.
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For one-dimensional polarons, all polaron characteristics diverge due to the Coulomb
nature of this problem. However, upon introducing

(=2
o = g ;(Iz,))ot (13)

by usinga’ instead ofa, we can get the finite polaron ground-state energy for fimiten
one-dimensional polarons with the same approach. Equation (13) has been used to treat
one-dimensional polarons in [14, 15].

After tedious calculations, the numerical results for the ground-state energi¥s=fot,
2 and 3 are obtained as follows:

EY = —0.333 12" (14)
E?P = —0.404 74 (15)
E3P = —0.108 512 (16)

For comparison, in tables 1-3, we list the present results with the known results of the
ground-state energies of one-, two- and three-dimensional polarons in the strong-coupling
limit. It is interesting to note that the present results are in good agreement with the former
best results, which are-0.333 0882 for one-dimensional polarons by Peetetsal [14],
—0.4047? for two-dimensional polarons by Wu Xiaoguaetjal [17] and —0.108 5132
for three-dimensional polarons by Miyake [20]. It should be recalled from [14,17] that
the authors obtained the best results for the one- and two-dimensional polaron ground-
state energies by selecting an improved Pekar wavefunction into which far more variational
parameters and higher-order terms-iare incorporated. However, in this paper, we obtain
the energy and the electron wavefunction by numerically solving the derived self-consistent
integro-differential equation, rather than by selecting a trial one. In principle, if the equation
is actually solved, the present results are no larger than their results. Fortunately, it is to be
noted that our results are really less than their results by very small percentages. It follows
that we have indeed developed a good variational approach fdimensional polarons in
the strong-coupling limit.

Table 1. The comparison of some results for the ground-state energies of one-dimensional
polarons in the strong-coupling limit.

Authors ED /o2

Peeterset al [14] —0.333088
Deganiet al [16] —1/x7
Smondyrev [3] —0.346233
Present —0.33312

We will also compare the present results with the elegant Feynman path-integral ones.
It is useful to list the general formalism for the calculation of thiedimensional polaron
ground-state energy [1] in the Feynman path integredatz

_ 2 N-1 oo —s
g _N@-w _F(ﬁ)"i’/ s (17)
& v T 2k Ve
2 .2
for="""(1—e) +ws (18)

v
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Table 2. The comparison of some results for the ground-state energies of two-dimensional
polarons in the strong-coupling limit.

Authors E?D /o2
Wu Xiaoguanget al [17] —0.4047
Das Sarmaet al [18] —0.392699
Feynman'’s theory [17] —0.392699
Hipolito [19] —0.392699
Smondyrev [3] —0.4099
Ganboldet al [6] —0.400538
Present —0.40474

Table 3. The comparison of some results for the ground-state energies of three-dimensional
polarons in the strong-coupling limit.

Authors E3D /o2
Miyake [20] —0.108513
Schultz [21] —0.1061
Pekar (quoted by Miyake [20])-0.108 504
Luttinger et al [22] —0.106 6
Marshallet al [23] -0.1078
Senget al [24] —0.106 5
Smondyrev [3] —0.109 206
Adamowskiet al [25] —0.1085128
Feranchuket al [26] -0.1078
Efimov et al [27] —0.10843
Ganboldet al [6] —0.107 766
Present —0.10851

wherev andw are variational parameters which are determined by minimizing the energy
(17). By expansion of equation (17) for large we obtain theN-dimensional polaron
ground-state energy in the strong-coupling limit

RGOS

Note that, for the one-dimensional polaron, the energy diverges. However, with the help of
equation (13), we hav&i’ = —(1/m)a?.

In figure 1, we plot the relative difference between our results and the Feynman ones
for the polaron ground-state energ¥ — Er)/Er, which is independent ot (or '), as
a function of the dimensiowv. It is shown that our variational approach supplies a lower
ground-state energy of thE-dimensional polaron than does the Feynman approach in the
strong-coupling limit, which again emphasizes the effectiveness of our approach in polaron
physics. It is also interesting to note that, as the dimension increases, our results become
closer and closer to the Feynman ones. It is well known that polaron effects are weakened
with increases in the dimension. So it is natural that the larger the value of the dimension
N the better the Feynman path-integral approximation.

Finally, we would like to point out that the present approach is universal for the problems
involving polarons in the strong-coupling regime. It is possible to map the Hamiltonian of
such systems as strongly coupled bound polarons, polarons in a quantum well, bipolarons
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Figure 1. The relative difference between the present and the Feynman polaron ground-state
energy in the strong-coupling limit as a function of the dimensian

and excitonic polarons into the following more general form:

2
p iker * ik
H = om +Vr)+ Ek a)kaliak + Ek [Fk(r)ak ek 4 F (T')a,ie ik ].(20)

By means of equation (3), we can eliminate the phonon degrees of freedom and get an
effective Hamiltonian including the wavefunction of the electron. Then the wavefunction
can be numerically calculated and the energy of the system can be obtained. The key
difference between our approach and some other variational ones is that we need not select
any trial variational wavefunction. Therefore, the artificial errors can be removed and only
the intrinsic errors of the approach itself are left. By the way, this approach has been applied
successfully to bipolarons [13] and excitonic polarons [28] by us.

4. Conclusions

We have presented a new variational approach to the calculation of the ground-state energy
of N-dimensional polarons in the strong-coupling limit. The calculated results are as good
as the best ones in the literature, if not better. It is also shown that this proposed approach is
a universal one in problems involving polarons in the strong-coupling regime. Applications
and extensions to other systems are in progress.
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