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Abstract. A novel variational approach is presented for the calculation of the ground-state
energy of the polaron in arbitraryN dimensions in the strong-coupling limit. By using the
phonon coherent state to represent the wavefunction of phonons, a self-consistent integro-
differential equation for the electron wavefunction is derived. The calculated results of the
ground-state energy forN = 1, 2 and 3 agree well with the best results in the literature. It
is also found that, for arbitraryN , the present results are less than the Feynman path integral
ones by small percentages. It is proposed that this approach should be universal for systems
involving polarons in the strong-coupling regime.

1. Introduction

The problem of arbitraryN -dimensional polarons has attracted much attention (an
incomplete list of studies is given in [1–6]) since the pioneering work by Peeterset al
[1]. It is indeed interesting and holds promise. In recent years, polaron effects have been
observed in low-dimensional systems [7], some physical problems have been mapped in two-
dimensional polarons [8] and it has been technologically possible to confine the electrons
in one direction [9] (quantum wires) and in two directions [10] (such as GaAs–AlxGa1−xAs
heterostructures).

On the other hand, the stability problem of a two-polaron bound state (bipolaron)
has become of interest since the mechanism of bipolaron Bose–Einstein condensation was
proposed by Emin [11] to explain high-temperature superconductivity (HTSC). In fact, the
HTSC materials are not restricted to three dimensions only and bipolarons are known to
exist in the strong-coupling regime [12, 13]. Therefore, it is important to investigate the
single polaron in arbitraryN dimensions in the strong-coupling limit.

The main purpose of this paper is to present a new variational approach for calculations
of the ground-state energy ofN -dimensional polarons in the strong-coupling limit. We
select the wavefunction of the phonon part to be the coherent state form and derive a self-
consistent integro-differential equation satisfied by the electron wavefunction. Furthermore,
we obtain the ground-state energy by solving this equation numerically, rather than by
choosing any trial electron wavefunctions. We also compare our results with those available
in the literature.
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2. Integro-differential equations

We start with the Hamiltonian of polarons inN dimensions derived by Peeterset al [1] (in
units of 2m = h̄ = ω0 = 1)

H = p2 +
∑

k

a
†
kak +

∑
k

vk

(
akeik·r + a

†
keik·r

)
(1)

where all vectors areN dimensional,r andp are the position and the momentum operators
of the electron,a†

k andak are respectively the creation and annihilation operators of the LO
phonons with the wavevectork and

v2
k = 0

(
N−1

2

)
2N−1π(N−1)/2α

νNkN−1
(2)

with νN being theN -dimensional crystal volume andα being the electron–phonon coupling
constant.

The solution to this Hamiltonian is assumed to take the following form:

| . . .〉 = ϕ(r)|A〉 (3)

whereϕ(r) is the electron wavefunction to be determined and|A〉 is the coherent state

|A〉 = exp

(∑
k

[
α(k)a

†
k − α∗(k)ak

])
|0〉. (4)

Hereα(k) will be treated as a variational function,|0〉 is the unperturbed zero-phonon state
satisfyingak|0〉 = 0 for all k.

It should be mentioned that equations (3) and (4) have also been employed to
deal with N -dimensional polarons in the strong-coupling regime by Chatterjee [5]. For
further progress, he chose two trial wavefunctions, namely, the Gaussian function and the
hydrogenic 1s wavefunction, for the electronic part. However, in this paper it is unnecessary
to use any trial electron wavefunction, as will be shown below.

For the next step, averaging the Hamiltonian (1) over the wavefunction (3), we have
the following energy expectation:

E = 〈
P 2

〉 + ∑
k

α∗(k)α(k) +
∑

k

vk[α(k)〈exp(ik · r)〉 + α∗(k)〈exp(−ik · r)〉] (5)

where 〈. . .〉 denotes averaging over the wavefunctionϕ(r). Minimizing the energy
expectation with respect toα(k) andα∗(k) results in

α(k) = −vk〈exp(−ik · r)〉 (6)

α∗(k) = −vk〈exp(ik · r)〉. (7)

It is easily found thatα(k) = α∗(k), both depending on the modulus of the vectork only.
In the averaging, the volume element inN -dimensionalr-space can be reduced to

dr = 2π
N−1

2

0
(

N−1
2

) rN−1dr sinN−2 θ dθ (8)

whereθ is the angle betweenk andr. Soα(k) can be expressed as

α(k) = −vk
(2π)

N
2

k
N
2 −1

∫
JN

2 −1r
N
2 ϕ(r)2 dr (9)

whereJm(x) is themth-order Bessel function.
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Eliminating the phonon coordinates by averaging the Hamiltonian (1) over the phonon
coherent state|A〉, we derive the following effective Hamiltonian in the representation of
the electron coordinate:

Heff = −∇2 +
∑

k

α∗(k)α(k) +
∑

k

vk[α(k) exp(ik · r) + α∗(k) exp(−ik · r)]. (10)

It is of some interest to note from equation (9) that the effective Hamiltonian (10) contains the
wavefunction of the electronϕ(r). Substituting equation (9) into equation (10), transforming
the summation

∑
k into an integralνN/(2π)N

∫
dk, integrating over all angles analytically,

followed by using the variable transformationϕ(r) = α
N
2 ψ(αr), x = αr and E = E0α

2,
the Schr̈odinger equation for the reduced electron wavefunctionψ(x) is finally obtained as
follows:

E0ψ(x) = − 1

xN−1

d

dx

(
xN−1 d

dx
ψ(x)

)
+

{
8πN

[0(N
2 )]2

×
∫ ∞

0
dx1 ψ2

(
x1

)
xN−2

1

∫ x1

0
dx2 ψ2

(
x2

)
xN−1

2 F

(
1

2
,

3 − N

2
; N

2
;

(
x2

x1

)2)
− 4π

N
2

0(N
2 )

[∫ x

0
dx1 ψ2

(
x1

)xN−1
1

x
F

(
1

2
,

3 − N

2
; N

2
;

(
x1

x

)2)
+

∫ ∞

x

dx1 ψ2
(
x1

)
xN−2

1 F

(
1

2
,

3 − N

2
; N

2
;

(
x

x1

)2)]}
ψ(x) (11)

whereF(a, b; c; z) is the hypergeometric function and use has been made of the following
definite integral of special functions:∫ ∞

0

Jm(µt)Jm(νt)

t2m
dt = µmνm−1√π

4m0( 2m+1
2 )0(m + 1)

F

(
1

2
,

1 − 2m

2
; m + 1;

(
µ

ν

)2)
(12)

which is valid for Re(2m) > −1 and 0< µ < ν.
Note that this self-consistent integro-differential equation is independent ofα. Based on

the transformationE = E0α
2, it is found that the ground-state energy of theN -dimensional

polaron in the strong-coupling limit is proportional toα2.

3. Numerical results and discussion

It is possible to solve equation (11) numerically and to obtain the electron wavefunction
and the polaron ground-state energy for arbitraryN -dimensional polarons except the one-
dimensional polaron. A brief description of the numerical procedures is needed here. First,
choosing an initial wavefunction, say, the trial wavefunction in the literature, and inserting
it into the curly brackets{. . .} in the second term on the right-hand side of equation (11),
the numerical problem is then reduced to the standard two-point boundary value problem
with the boundary conditionψ′(0) = 0 andψ(∞) = 0. For each iteration, we can get a new
solution for the wavefunction by the shooting method. Generally, it is not the true solution to
the Schr̈odinger equation (11), because it is different from that in curly brackets. However,
it is predicted that after sufficient time iterations the obtained solution can be brought into
excellent agreement with the true ones. If the electron wavefunction is actually found, the
polaron ground-state energy can be obtained simultaneously. In the following calculations,
on the basis of extensive tests, we believe that the polaron ground-state energies are accurate
for the given digits.
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For one-dimensional polarons, all polaron characteristics diverge due to the Coulomb
nature of this problem. However, upon introducing

α′ =
√

π

2

0(N−1
2 )

0(N
2 )

α (13)

by usingα′ instead ofα, we can get the finite polaron ground-state energy for finiteα′ in
one-dimensional polarons with the same approach. Equation (13) has been used to treat
one-dimensional polarons in [14, 15].

After tedious calculations, the numerical results for the ground-state energies forN = 1,
2 and 3 are obtained as follows:

E1D = −0.333 12α′2 (14)

E2D = −0.404 74α2 (15)

E3D = −0.108 51α2. (16)

For comparison, in tables 1–3, we list the present results with the known results of the
ground-state energies of one-, two- and three-dimensional polarons in the strong-coupling
limit. It is interesting to note that the present results are in good agreement with the former
best results, which are−0.333 088α′2 for one-dimensional polarons by Peeterset al [14],
−0.4047α2 for two-dimensional polarons by Wu Xiaoguanget al [17] and −0.108 513α2

for three-dimensional polarons by Miyake [20]. It should be recalled from [14, 17] that
the authors obtained the best results for the one- and two-dimensional polaron ground-
state energies by selecting an improved Pekar wavefunction into which far more variational
parameters and higher-order terms inr are incorporated. However, in this paper, we obtain
the energy and the electron wavefunction by numerically solving the derived self-consistent
integro-differential equation, rather than by selecting a trial one. In principle, if the equation
is actually solved, the present results are no larger than their results. Fortunately, it is to be
noted that our results are really less than their results by very small percentages. It follows
that we have indeed developed a good variational approach forN -dimensional polarons in
the strong-coupling limit.

Table 1. The comparison of some results for the ground-state energies of one-dimensional
polarons in the strong-coupling limit.

Authors E1D/α′2

Peeterset al [14] −0.333 088
Deganiet al [16] −1/π

Smondyrev [3] −0.346 233
Present −0.333 12

We will also compare the present results with the elegant Feynman path-integral ones.
It is useful to list the general formalism for the calculation of theN -dimensional polaron
ground-state energy [1] in the Feynman path integralansatz:

E = N

4

(v − w)2

v
− 0(N−1

2 )

0(N
2 )

αv

2

∫ ∞

0
ds

e−s

f (s)
1
2

(17)

f (s) = v2 − w2

v

(
1 − e−vs

) + w2s (18)
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Table 2. The comparison of some results for the ground-state energies of two-dimensional
polarons in the strong-coupling limit.

Authors E2D/α2

Wu Xiaoguanget al [17] −0.404 7
Das Sarmaet al [18] −0.392 699
Feynman’s theory [17] −0.392 699
Hipolito [19] −0.392 699
Smondyrev [3] −0.409 9
Ganboldet al [6] −0.400 538
Present −0.404 74

Table 3. The comparison of some results for the ground-state energies of three-dimensional
polarons in the strong-coupling limit.

Authors E3D/α2

Miyake [20] −0.108 513
Schultz [21] −0.106 1
Pekar (quoted by Miyake [20])−0.108 504
Luttinger et al [22] −0.106 6
Marshallet al [23] −0.107 8
Senget al [24] −0.106 5
Smondyrev [3] −0.109 206
Adamowskiet al [25] −0.108 512 8
Feranchuket al [26] −0.107 8
Efimov et al [27] −0.108 43
Ganboldet al [6] −0.107 766
Present −0.108 51

wherev andw are variational parameters which are determined by minimizing the energy
(17). By expansion of equation (17) for largeα, we obtain theN -dimensional polaron
ground-state energy in the strong-coupling limit

EF = − 1

4N

(
0(N−1

2 )

0(N
2 )

α

)2

. (19)

Note that, for the one-dimensional polaron, the energy diverges. However, with the help of
equation (13), we haveE1D

F = −(1/π)α′2.
In figure 1, we plot the relative difference between our results and the Feynman ones

for the polaron ground-state energy(E − EF )/EF , which is independent ofα (or α′), as
a function of the dimensionN . It is shown that our variational approach supplies a lower
ground-state energy of theN -dimensional polaron than does the Feynman approach in the
strong-coupling limit, which again emphasizes the effectiveness of our approach in polaron
physics. It is also interesting to note that, as the dimension increases, our results become
closer and closer to the Feynman ones. It is well known that polaron effects are weakened
with increases in the dimension. So it is natural that the larger the value of the dimension
N the better the Feynman path-integral approximation.

Finally, we would like to point out that the present approach is universal for the problems
involving polarons in the strong-coupling regime. It is possible to map the Hamiltonian of
such systems as strongly coupled bound polarons, polarons in a quantum well, bipolarons
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Figure 1. The relative difference between the present and the Feynman polaron ground-state
energy in the strong-coupling limit as a function of the dimensionN .

and excitonic polarons into the following more general form:

H = p2

2m
+ V (r) +

∑
k

ωka
†
kak +

∑
k

[
Fk(r)ak eik·r + F ∗

k (r)a
†
k e−ik·r

]
.(20)

By means of equation (3), we can eliminate the phonon degrees of freedom and get an
effective Hamiltonian including the wavefunction of the electron. Then the wavefunction
can be numerically calculated and the energy of the system can be obtained. The key
difference between our approach and some other variational ones is that we need not select
any trial variational wavefunction. Therefore, the artificial errors can be removed and only
the intrinsic errors of the approach itself are left. By the way, this approach has been applied
successfully to bipolarons [13] and excitonic polarons [28] by us.

4. Conclusions

We have presented a new variational approach to the calculation of the ground-state energy
of N -dimensional polarons in the strong-coupling limit. The calculated results are as good
as the best ones in the literature, if not better. It is also shown that this proposed approach is
a universal one in problems involving polarons in the strong-coupling regime. Applications
and extensions to other systems are in progress.
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